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INVITED ARTICLE

Numerical results for the blue phases

G.P. Alexandera,b and J.M. Yeomansa*

aThe Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, UK; bDepartment of

Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

(Received 3 February 2008; final form 12 February 2009)

We review recent numerical work investigating the equilibrium phase diagram, and the dynamics of the cholesteric
blue phases. In equilibrium numerical results confirm the predictions of the classic analytical theories, and extend
them to incorporate different values of the elastic constants, or the effects of an applied electric field. There is a
striking increase in the stability of blue phase I in systems where the cholesteric undergoes helical sense inversion,
and the anomalous electrostriction observed in this phase is reproduced. Solving the equations of motion allows us
to present results for the phase transition kinetics of blue phase I under dielectric or flexoelectric coupling to an
applied electric field. We also present simulations of the blue phases in a flow field, showing how the disclination
network acts to oppose the flow. The results are based on the Landau–de Gennes expansion of the liquid crystal free
energy: that such a simple and elegant theory can predict such complex and subtle physical behaviour is
remarkable.
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1. Introduction

One of the spectacular successes of de Gennes’ Landau

theory of liquid crystals is that it captures, without the
need for extension or modification, many of the

remarkable and subtle phase transitions and proper-

ties of liquid crystals. Blue phases provide an espe-

cially vivid example of this. The general features and

properties of these unique mesophases are both ‘beau-

tiful and mysterious’ (1) and yet they can be under-

stood qualitatively and quantitatively using de

Gennes’ Q-tensor theory of liquid crystal phase
transitions.

Blue phases are found in highly chiral liquid crys-

tals between the high-temperature isotropic fluid and

the lower temperature cholesteric phases (1–7). They

are remarkable mesophases, exhibiting a brightly

coloured texture of individual, micrometre-sized pla-

telets. The bright colour indicates selective reflection

due to a periodic structure, much like in an ordinary
crystal, but with a much larger characteristic length

scale, and indeed the reflection spectra show Bragg

peaks that can be indexed by cubic space groups with

lattice constants of several hundred nanometres.

Furthermore, individual platelets of monodomain

crystals themselves show distinctive facetting corre-

sponding to Miller planes of the lattice structure and

with the faces growing in a sequence of steps (8). Yet,
blue phases are not crystals in the traditional sense:

they have no long-range positional order and are full

three-dimensional fluids. The crystalline order is in

the orientational degrees of freedom of the liquid

crystal.

The key to understanding the properties of the blue

phases was in realising that the locally preferred order
in the chiral liquid crystal is one of double twist, with the

molecules adopting helical ordering along two, perpen-

dicular axes, as opposed to the usual single twist of an

ordinary cholesteric helix (9–12). However, it is not

possible to construct a global state with helical ordering

in two directions, without introducing disclination lines

into the structure. Therefore, the blue phases consist of

local, cylindrical, regions of double twist separated by a
regular disclination network.

A tutorial, two-dimensional example of a blue

phase texture is shown in Figure 1. This demonstrates

how local regions of double twist can be pieced

together only by introducing a square array of topo-

logical defects. In physical, three-dimensional, crystals

the disclination structures are more complex; three

distinct blue phase textures have been identified upon
cooling from the isotropic liquid. Typical experimen-

tal phase diagrams are shown in Figure 2. Blue phases

I and II exhibit textures with cubic symmetry corre-

sponding to the space groups O8� and O2, respectively

(7). These are illustrated in Figure 3 which shows both

the disclination networks and the topology of the

lattice of double twist cylinders in the two phases.

Blue phase III is less well understood; it has an
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amorphous structure with the same symmetry as the

isotropic fluid (13, 14).

The unique combination of crystalline order with

lattice constants comparable to the wavelength of

visible light and full three-dimensional fluidity make

the blue phases ideal for technological uses such as
fast light modulators, photonic crystals or tunable

lasers (15–18). The principal obstruction to their

application was the very limited temperature range,

approximately 1 K, over which the phases were

stable. However, recently, the stability range has been

extended to as much as 60 K, including room tempera-

ture, by the addition of bimesogenic molecules or

photo-crosslinking of polymers (19, 20). This has

opened the way to device applications and, in May
2008, Samsung Electronics unveiled a prototype ‘blue

phase mode LCD’ (21, 22).

The theoretical description of the general features

and properties of the blue phases was developed in the

1980s in a series of important papers, summarised in

the review (7). Two approaches were followed, a low

chirality theory, based on the Frank director field

description (9, 10), and a high chirality theory using
the Landau–de Gennes Q-tensor (23, 24). The theore-

tical approaches were able to correctly predict the

symmetries of the blue phases and to give a good

account of the phase diagram, although with some

discrepancies. For example, additional textures with

space groups O8þ and O5 were found to be stable

within the parameter range corresponding to the

experiments, but were not observed experimentally.
The renewed experimental interest in the blue

phases provided the motivation to revisit them theore-

tically. Since the original analytic investigations, com-

puters have become a powerful tool for studying

complex fluids, and it is now feasible not only to revisit

and extend the calculations of the blue-phase phase

diagrams (25, 26), but also to obtain results on blue

phase kinetics and hydrodynamics (27, 28). The aim of
this article is to review recent research showing how

numerical simulations of the blue phases are allowing

us to gain further insights into their behaviour.

Figure 1. Director field in a hypothetical, two-dimensional,
blue phase showing how local regions of double twist
can be pieced together with a square array of topological
defects. (Blue phases with two-dimensional symmetry and
translational invariance in the third dimension have been
observed experimentally in an electric field (32), but these
have hexagonal symmetry.)

Figure 2. Experimental phase diagrams of the cholesteric blue phases for two different chiral compounds, reproduced from (4).
Three distinct blue phases are found, in the order blue phase I, blue phase II, blue phase III upon increasing the amount of chiral
dopant.
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In Section 2 we describe the Landau–de Gennes

equations that have proved so successful in modelling

the blue phases and outline how they can be solved

numerically. In particular we discuss how the size of

the unit cell must be allowed to vary to correctly mini-
mise the free energy. Then, in Section 3, we revisit the

classic calculations of the thermodynamic phase diagram

showing the changes that result when the approxima-

tions necessary to make the analytic calculations feasible

can be circumvented by a numerical solution. We also

show that including additional terms in the Landau–de

Gennes free energy can significantly change the phase

diagram. Most dramatic among the results is the increase
in the stability of blue phase I obtained in systems where

the cholesteric undergoes helical sense inversion.

Many of the potential technological applications of

the blue phases rely on the response of the material to an

electric field. In the blue phases the effects of an electric

field are particularly rich, including continuous distor-

tions in the size and shape of the unit cell (29–31) and a

series of field-induced transitions to new blue phase
structures, not stable in zero field (32–35). In Section

3.3 we show how the Landau–de Gennes expansion

correctly predicts electrostriction and, in particular,

the anomalous electrostriction of blue phase I.

We next, in Section 4, summarise the equations of

motion which describe blue phase hydrodynamics.

These can be used to investigate the kinetics of transi-

tions between blue phases, and their response to an

applied electric field or to an imposed flow. Section 5 is
devoted to examples demonstrating the application of

the dynamical equations. We describe an investigation

into the viscoelastic properties of the blue phases as

they are subject to a Poiseuille flow field. We then

describe the kinetics of the phase transitions induced

in blue phase I as it is coupled to an electric field, either

via a dielectric, or a flexoelectric, term in the free

energy. This allows us to propose a candidate struc-
ture for blue phase X.

2. Minimising the Landau–de Gennes free energy

2.1 Landau expansion in terms of the Q-tensor

One of de Gennes’ vital contributions to the theory of

liquid crystals was to identify the Q tensor as a suitable
order parameter (1). A Landau expansion of the free

energy of liquid crystals in terms of Q has proved

useful as a starting point for interpreting liquid crystal

phase diagrams (1, 7, 23, 26, 36)

(a)

(b)

Figure 3. Network of disclinations and arrangement of double twist cylinders in (a) blue phase I and (b) blue phase II. The
disclinations are shown on the left in blue and the double twist cylinders on the right in grey. In all figures 23 unit cells have been
shown to more clearly illustrate the structure. Colour refers to the online version.
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F ¼ 1

V

Z
�

d3r

(
A0ð1� �=3Þ

2
trðQ2Þ � A0�

3
trðQ3Þ

þ A0�

4
ðtrðQ2ÞÞ2 þ L21

2
ð� · Qþ 2q0QÞ2

þ L22

2
ð� �QÞ2 þ q0L31Q2 � � · Q

þ L34

2
Q����Q����Q��

þ L38

2
Q����Q����Q��

)
: ð1Þ

Here A0 is a constant with the dimensions of an energy

density, � plays the role of an effective temperature for
thermotropic liquid crystals, q0 defines the helical

pitch and the Lij are elastic constants. The expansion,

taken to second order in the derivatives of Q, can only

account for two independent Frank elastic constants

and imposes the condition that the magnitude of splay

and bend are equal (7). In order to remove this con-

straint, and to allow for a temperature-dependent

helical pitch, it is necessary to consider, at least,
terms cubic in Q and quadratic order in gradients

(37–39). There are eight such terms and it is unrealistic

to consider them all. We include one chiral L31 and two

achiral terms L34 and L38. The L34 term was chosen as it

contributes equally to all three elastic constants and

the L38 term as it gives the largest distinction between

splay and bend and because it has the largest contribu-

tion to the energetics of an isolated double twist cylin-
der. (However, the choice is arbitrary and other

coefficients may be non-zero in any given material,

and may have a considerable effect on the phase

diagram.)

Rewriting the free energy in terms of dimensionless

variables demonstrates that it depends only on the two

dimensionless parameters (26)

� :¼ 9ð3� �Þ
�

; �2 :¼ 108q2
0L21

A0�
; ð2Þ

known as the reduced temperature and the chirality,

respectively, together with ratios of the elastic con-
stants. In line with previous work, phase diagrams

will be presented in terms of these parameters.

2.2 Numerical minimisation of the free energy

The free energy (1) is minimised by relaxing the

Q-tensor according to a Ginzburg–Landau equation

@tQ ¼ �
��F
�Q
þ 1

3
tr

�F

�Q

� �
I

� �
: ð3Þ

This equation can be solved using many different

numerical approaches; the results presented here were

obtained using a lattice Boltzmann algorithm (40, 41).

To study the different blue phases it is necessary to

implement appropriate initial conditions for the simu-

lation. The Q-tensor is initialised using analytic

expressions appropriate to the high chirality limit
(�!1), which act to define the symmetry of the

chosen phase. For blue phase I (7, 23, 25) we use

Qxx ,� sinðky=
ffiffiffi
2
p
Þ cosðkx=

ffiffiffi
2
p
Þ

� sinðkx=
ffiffiffi
2
p
Þ cosðkz=

ffiffiffi
2
p
Þ

þ2 sinðkz=
ffiffiffi
2
p
Þ cosðky=

ffiffiffi
2
p
Þ;

Qxy ,�
ffiffiffi
2
p

sinðkx=
ffiffiffi
2
p
Þ sinðkz=

ffiffiffi
2
p
Þ

�
ffiffiffi
2
p

cosðky=
ffiffiffi
2
p
Þ cosðkz=

ffiffiffi
2
p
Þ

þ sinðkx=
ffiffiffi
2
p
Þ cosðky=

ffiffiffi
2
p
Þ;

ð4Þ

where k ¼ 2
ffiffiffi
2
p

�=a, with a the lattice constant, and the
other components are obtained by cyclic permutation.

Similarly, for blue phase II the Q-tensor is initialised

as (7, 23, 25)

Qxx , cosðkzÞ � cosðkyÞ;
Qxy , sinðkzÞ; ð5Þ

where k ¼ 2�=a and the other components are again

obtained by cyclic permutation.
Under numerical evolution using Equation (3) the

system relaxes to the structure of the same symmetry

that locally minimises the free energy. We are there-

fore able to obtain, for any value of the parameters,

local minima of the free energy corresponding to each

of the cholesteric and blue phases. The global free

energy minimum was taken to be the smallest of

these calculated local minima.
To achieve a full minimisation of the free energy it

is necessary to set the correct unit cell size in the

simulation. This is not known a priori, but rather

depends on the magnitude of the order parameter, a

quantity that is only determined by the numerical

minimisation itself. Therefore, we must introduce a

means of determining, and setting, the unit cell size

as the Q-tensor evolves during the simulation. It is
possible to account for a change in unit cell size by

rescaling the gradient contributions to the free energy

and molecular field. This is accomplished in practice

by changing the elastic constants to

q0 ¼ qinit
0 =r;

Lij ¼ Linit
ij · r2;

ð6Þ

where the superscript ‘init’ denotes the initial value of

a simulation parameter and r is the appropriate rescal-

ing factor, which is identical to the ‘redshift’ described

in (23, 24).
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To calculate the optimal size of the unit cell we

note that, since the free energy is quadratic in gradi-

ents, it may be written formally in k-space as

f ¼ ak2 þ bk þ c; ð7Þ

where the coefficients a, b and c depend on the Q-

tensor, but not on k. The optimum wavevector is

given by k ¼ �b=2a, and since the coefficients a and

b are determined by the simulation it is straightfor-
ward to use these values to determine the exact value

for the size of the unit cell at every timestep, thereby

obtaining a full minimisation of the free energy.

3. The equilibrium phase diagram

3.1 Revisiting the analytic calculations

The phase diagram for chiral liquid crystals obtained
for a selection of parameter values using the Landau–de

Gennes free energy, Equation (1), is shown in Figure 4.

Figure 4(a), adapted from (24), shows the phase dia-

gram calculated analytically in the high chirality limit,

in the one elastic constant approximation, and Figure

4(b) compares numerical results for the same para-

meters in the free energy. The differences between the

analytic and numerical results show that including
higher-order harmonics in the minimisation of the free

energy is significant, as might be expected for phases

with small free energy differences. In the numerical

(exact) minimisation, O8� is stable over a larger range

of parameters and at lower chirality values, in better

agreement with the experimental phase diagram, Figure

2. Moreover, the regions of stability of the O5 and O8þ

textures found in the early studies (23, 24) are shifted to
unphysically high values of the chirality (25). This result

is again consistent with experiment, where blue phase

structures of these symmetries have not been observed.

3.2 Varying the elastic constants

We now compare the phase diagrams obtained as the

ratios of the elastic constants are varied. To investigate
the effect of the bend elastic constant we chose para-

meter values L21 ¼ L22 ¼ L34 ¼ 0:02, L38 ¼ 0 which

corresponds to a ratio of splay to bend of about 0.5,

while splay and twist remain degenerate. The resulting

phase diagram is shown in Figure 4(c). In a compar-

ison with the case of equal elastic constants, the stabi-

lity of blue phase I is seen to decrease quite

significantly relative to the cholesteric phase while at
the same time there is a small increase in stability over

blue phase II. There is only a minor shift in the cho-

lesteric-blue phase I phase boundary at the transition

temperature, however, as the temperature decreases

the shift becomes larger.

The value of the twist elastic constant is controlled

by the Landau–de Gennes parameter L22. In most

liquid crystals the twist elastic constant is smaller

than either splay or bend. In order to match this, we

constructed the phase diagram for parameter values

L21 ¼ 0:02, L22 ¼ 0:04, L34 ¼ L38 ¼ 0, which is shown

in Figure 4(d). This choice of parameters resulted in a
ratio of splay to twist of about 1.5, while splay and

bend remained degenerate. Again we observe that the

stability of blue phase I is reduced relative to the

cholesteric phase by an amount similar to that seen

by varying the bend elastic constant.

Finally, we consider the effect of the chiral cubic

invariant on the blue phases. We chose parameter values

of L21 ¼ L22 ¼ L34 ¼ 0:02, L38 ¼ 0:04, L31 ¼ �0:18,
which gives a ratio of bend to splay of about 1:6.

Moreover, for these coefficients the cholesteric under-

goes helical sense inversion (42, 43) at a reduced tem-

perature of about � � �2. The phase diagram is shown

in Figure 4(e). What is remarkable is the dramatic

increase in stability of blue phase I relative to the cho-

lesteric phase. The region of stability has been increased

down to chiralities as low as � ¼ 0:07 and at such low
chiralities the phase boundary is essentially independent

of � for all � . In addition, there is a very small region of

stability for blue phase II located close to the isotropic

transition (Figure 4(f)). Since blue phase I is now stable

over a much larger temperature range it displays a sig-

nificant variation in unit cell size as the temperature is

lowered, with the lattice parameter more than doubling

between � ¼ 1 and � ¼ �5.

3.3 Electrostriction

The response of the cubic blue phases to the applica-

tion of an external field has been a topic of interest

since the mid-1980s and continues to be so because of

the importance to potential blue-phase-based devices

(18, 22, 44). The principal features include electrostric-
tion, a continuous distortion of the shape and size of

the unit cell with increasing field, and a series of field

induced textural transitions. The electrostriction

involves a shift of the back-scattered Bragg peak of

5–10% and is quadratic in the field strength (29–31).

The direction of the shift changes sign with the sign of

the dielectric anisotropy, but blue phase I also displays

an unusual response referred to as anomalous electro-
striction, where an expansion along the field direction

is seen when the field is applied parallel to the ½011�
direction, but a contraction for fields parallel to ½001�.
At larger field strengths new blue phases appear.

Three distinct field-induced textures have been identi-

fied, possessing tetragonal, screw hexagonal and two-

dimensional hexagonal symmetry with increasing field

strength (32–35).
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Figure 4. Phase diagram of cholesteric liquid crystals within the Landau–de Gennes theory. Here � , the reduced temperature,
and �, the chirality, are defined by Equation (2). Top row: phase diagrams in the one elastic constant approximation determined
(a) analytically using truncated Fourier series, and (b) numerically. Middle row: numerical phase diagrams with unequal elastic
constants: (c) K1 ¼ K2 ¼ 0:5K3, (d) K1 ¼ K3 ¼ 1:5K2. Bottom row: (e) the numerical phase diagram obtained with the chiral
invariant, L31, added to the free energy. The magnitude of this term was chosen so as to produce helical sense inversion in the
cholesteric phase at a temperature not far below the isotropic transition temperature. (f) An enlargement of the region near the
isotropic transition temperature. Note the reversal in the order of appearance of blue phase I and blue phase II as a function of
chirality. (Adapted from (26).)
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Much of the electric field behaviour has been under-

stood theoretically via extensions of the Landau–de

Gennes theory, including the qualitative features of

the electrostriction and the field induced textural tran-

sitions (45–50). However, the approximations inherent

in the analytic calculations limited the quantitative

comparison that was possible and a number of features,
including the anomalous electrostriction of blue phase I

and the tetragonal field induced texture blue phase X,

could not be accounted for (48, 50).

The main additional difficulty in minimising the

free energy of the blue phases in the presence of an

electric field (28) is in accounting for electrostriction,

as there is a change not only in the size, but also in the

shape, of the unit cell as the field is applied. This
distortion can be accounted for in two steps: first the

shape of the simulation unit cell is fixed and the corre-

sponding size, which minimises the free energy, is

determined. This is then repeated for a set of varying

shapes of the unit cell, e.g. from cubic to tetragonal.

Hence the free energy is determined for several values

of the ratio Lz=Lx parameterising the cubic-tetragonal

distortion and fitted to a quadratic. The actual distor-
tion is then given by the minimum of this fit.

The field dependence of the blue phase lattice para-

meters is shown in Figure 5 for an applied electric field

along the ½001� direction. Note, in particular, that the

unit cell expands along the field direction in blue phase

II, but contracts in blue phase I, in agreement with

experiment (44). When the field is instead applied

along to the ½011� direction both blue phases undergo
an expansion parallel to the field, a precursor to the

transition to blue phase X that is observed at larger field

strengths. It is very pleasing that a numerical approach

can predict anomalous electrostriction in blue phase I

as the effect is lost in the truncations needed in analytic

calculations (50). Mapping from physical to simulation

units gives a magnitude of the electrostriction in the

range 10�2–10�1mm2V�2 for both blue phases, again in
good agreement with experiments (44).

4. Hydrodynamic equations

The Ginzburg–Landau equation, Equation (3),

describes the relaxation of a liquid crystal to the mini-

mum free energy, but does not describe physical

dynamics in situations where flow is important.

Several authors have recently used numerical

approaches to solve the full hydrodynamic equations

of motion for liquid crystals in the nematic and choles-

teric phases. For example, it has been possible to simu-
late defect hydrodynamics (51–54), phase ordering

(55–57), the kinetics of transitions between different

liquid crystal phases (28, 58), cholesteric rheology

(59–64) and the effect of flow on device switching

(65–73). Owing to their disclination structure the

kinetics and the rheology of the blue phases is an excit-

ing, but demanding, numerical problem which requires
intensive numerical resources. However, such simula-

tions are rapidly becoming feasible: we summarise the

equations of motion and some of the results obtained so

far, and then discuss possible directions for future work.

The hydrodynamic equations of motion of liquid

crystals are complex, both because of the anisotropy

of the molecules and because of the coupling between

the order parameter field and the flow field. In general,
flow leads to a rotation of the local orientation, which

in turn influences the flow. Similarly, if a disturbance

is initiated in the director, its reorientation is generally

accompanied by fluid motion, an effect sometimes

referred to as backflow. If a system is close to a phase

transition, or contains disclinations, variations in the

magnitude of the order parameter can be significant

and therefore a hydrodynamic description based on
the Q-tensor is needed (74–78).
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Figure 5. Distortion of the unit cell of blue phase I (top) and
blue phase II (bottom) in an electric field applied along ½001�.
The lattice parameters parallel (*, solid line) and
perpendicular (&, dashed line) to the field are shown
relative to their zero field value. Note that blue phase I
contracts parallel to the field, whereas blue phase II
expands parallel to the field. (Adapted from (28).)

Liquid Crystals 1221

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



The order parameter evolves towards the mini-

mum of the free energy, but with a convective time

derivative to account for the advection with the fluid

DtQ ¼ �
��F
�Q
þ 1

3
tr

�F

�Q

� �
I

� �
: ð8Þ

The term in brackets on the right-hand side is called

the molecular field, H, and � is a collective rotational

diffusion constant. The material derivative for rod-
like molecules is given by (74)

DtQ ¼ ð@t þ u � �ÞQ� ð	DþWÞ Qþ 1

3
I

� �

� Qþ 1

3
I

� �
ð	D�WÞþ 2	 Qþ 1

3
I

� �
trðQWÞ;

where D ¼ ðWþWTÞ=2 and W ¼ ðW�WTÞ=2 are

the symmetric and antisymmetric parts, respectively, of

the velocity gradient tensor W�� ¼ ��u�. The constant 	
depends on the molecular details of a given liquid crystal.

The fluid velocity field is taken to obey the con-

tinuity equation and a Navier–Stokes equation with a
stress tensor generalised to describe liquid crystal

hydrodynamics (74)

@t%þ � � ð%uÞ ¼ 0; ð9Þ

%ð@tuþ u � �uÞ ¼ ��pþ � � s ; ð10Þ


�� ¼ �ð��u� þ ��u�Þ þ 2	 Q�� þ
1

3
���

� �

Q��H�� � 	H�� Q�� þ
1

3
���

� �
� 	 Q�� þ

1

3
���

� �
H�� þQ��H�� �H��Q�� � ��Q��

�F
���Q��

: ð11Þ

Equations (8), (9) and (10) can be solved either using
a lattice Boltzmann approach (40, 79), or finite differ-

ence schemes (53, 66, 80) or, giving somewhat improved

stability while retaining the advantages of lattice

Boltzmann, a hybrid scheme where a lattice Boltzmann

solution of the flow equation is coupled to a finite

difference solution of the order parameter field (81).

5. Blue phase rheology

5.1 Response of the disclination lattice to a Poiseuille
flow

To investigate the rheological response of the blue

phases we placed a unit cell between fixed plates and

imposed constant force on the fluid, together with no-

slip boundary conditions on the velocity field at the

plates. In a Newtonian fluid this geometry leads to a

quadratic, Poiseuille flow profile. The choice of

boundary conditions for the director field was to

assume that the disclinations are fixed at the bound-

aries. Figure 6 compares the apparent viscosity

(obtained through a comparison with the Poiseuille

velocity) in blue phases I and II, in a phase comprising

a square array of disclinations with two-dimensional

cross section corresponding to Figure 1, and in the
isotropic phase. The corresponding disclination con-

figurations, comparing zero and a finite velocity field,

are shown in Figure 7.

For small forcing the blue phase viscosities

increase by a factor of approximately four over that

of the isotropic fluid. This is because the disclination

network acts to oppose the flow and dissipate energy.

The blue phases reach a stationary state in which the
disclination network is bent and twisted by the flow.

The viscosities of blue phases I and II are approxi-

mately constant over a range of forcing, but the square

lattice structure shows shear thickening. This is

because each defect line, of topological strength 1,

opens to a disclination ring, comprising disclinations

of strength 1/2. The ring then twists and bends on itself

as the flow increases, as shown in Figure 7.
As the forcing increases there is significant shear

thinning in all three blue phase structures. This occurs

because the disclination network is destroyed by the

flow, and the viscosity drops to that of an isotropic

liquid crystal.

These results indicate that blue phase rheology is

extremely rich, and worthy of further study, both

Blue phase I
Blue Phase II
Square
Isotropic

Log(forcing)

η ap
p

6

0–5 –4 –3 –2 –1
0

4

2

Figure 6. Variation of the apparent viscosity of blue phase I,
blue phase II and a square array of double twist cylinders as
a function of the applied forcing. The viscosity of the
isotropic liquid crystal is also shown. Initially the blue
phases show an enhanced viscosity as the disclination
network opposes the flow. At higher forcing the
disclination network breaks up and the viscosities of the
blue phases tend to that of the isotropic liquid crystal.
(Adapted from (27).)
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experimentally and numerically. There is a need for

careful experiments, with good control over boundary

conditions. On the numerical side, work is in progress
to move towards larger numbers of unit cells in the

simulations and to assess the effects of different flow

geometries and boundary conditions (82).

5.2 Blue phase X

The ability to solve the dynamical equations of motion

means that it is possible to follow the way in which
disclinations rearrange during continuous textural

transitions. Moreover, the simulations provide a way

to identify possible candidate structures for blue

phases which have not yet been identified.
An example of this approach is simulations in

which blue phase I is placed under an intermediate

electric field applied parallel to the ½011� direction.

This is the set-up corresponding to the blue phase

I–blue phase X transition observed experimentally in

the 1980s (33, 34). The electrostriction distorts the shape

of the unit cell until it becomes tetragonal, at which

point there is a transition from the blue phase I texture
to a new texture known as blue phase X. Starting from
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Figure 7. Structure of the blue phases under Poiseuille flow. Rows A, B and C correspond to a square array of double twist
cylinders, blue phase I and blue phase II, respectively. The first column shows the disclination network at zero forcing and the
second a steady state of the network under flow. Note how, in row A, the strength 1 disclination opens to a strength 1

2
ring.

(Adapted from (27).)
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this geometry, and an unperturbed blue phase I, the

evolution of the disclination network is simulated

numerically. Initially, the disclinations in the network

twist, they then merge to form a transiently branched

structure, which finally reorganises into a new defect

network, not stable at zero field as shown in Figure 8.

This is a candidate structure for blue phase X, as it is a

new network, found via a continuous reorganisation

starting from blue phase I, and only stable in a field.

The results predict that in the candidate blue phase X:

(i) the disclinations perpendicular to the field are largely

unaffected; (ii) the network conforms to the space group

D10
4 identified in (34); and (iii) the double twist cylinders

deform but do not break during the transition; this
observation may be verified by experiments along the

lines of those in (83, 84).

5.3 Flexoelectric blue phases

In 1969 Meyer introduced the concept of flexoelectric

coupling to an external electric field and showed that

this could lead to a one-dimensional splay-bend dis-
tortion of the nematic director field (85). These results

have recently been extended to show that, near the

isotropic–nematic transition and with sufficiently

strong coupling, two-dimensional splay–bend struc-

tures with hexagonal symmetry can be stable (86).

Figure 9 shows the evolution of blue phase I when

flexoelectric coupling to an applied field is increased

quasistatically. As in the dielectric case, the electric
field induces a twist in the disclination lines allowing

them to transiently merge, thus facilitating textural

transitions. For the largest applied field strengths a

transition to the two-dimensional hexagonal flexoelec-

tric blue phase is indeed observed, as expected.

However, at intermediate values, two further transi-

tions precede it, each yielding distinct textures that are

stable over a small range of field strengths. The first is
to a centred tetragonal texture with space group I4122.

This has the same disclination network as the blue phase

X structure found under dielectric switching and

described above. At slightly higher field strengths there

is a second transition to a distinct tetragonal texture

with space group P4222. In this texture, the disclinations

are all parallel to the field, occurring in pairs that wrap

around each other to form a double helix, and with the
axes of the double helices themselves then arranged on a

square lattice. Finally, as the flexoelectric coupling is

increased, the two members of a given double helix

transiently merge and re-separate, allowing them to

both straighten out and to adopt an hexagonal config-

uration in the plane perpendicular to the field.

6. Discussion

The Landau–de Gennes expansion of the free energy of

liquid crystals has proved a vital tool in understanding

their thermodynamics. The theory has proven success-
ful even when very subtle energy–entropy balances,

such as those that stabilise the blue phases, come into

play. Beautiful early calculations, using approximate

theories based on the Landau–de Gennes formalism

Figure 8. Simulation of the blue phase I–blue phase X
transition. Top: blue phase I before the field is applied.
Middle: at the transition from blue phase I to blue phase
X. Bottom: the final configuration of disclination lines in
blue phase X. In all cases the electric field is applied parallel
to the ½011� direction, which is vertical in the figure.
(Adapted from (28).)
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that are analytically tractable, helped understand many

of the features of the blue phases. Here we have shown

that it is possible to make further progress by exploiting
modern computational resources to minimise the free

energy exactly.

We have shown that significant quantitative differ-

ences in the phase diagram arise from retaining cubic

order terms in the free energy expansion. In particular,

choosing expansion coefficients appropriate to systems

where the cholesteric undergoes helical sense inversion

gives rise to a very significant increase in the stability of
blue phase I. It would be interesting to see whether this

link can be established experimentally. Moreover, by

minimising the free energy with respect to both the

order parameter field and the size and shape of the

unit cell it is possible to predict the electrostriction of

the blue phases, obtaining good qualitative and quanti-

tative agreement with experiments.

The major drawback of the Landau–de Gennes
expansion is in the difficulty of knowing values of the

expansion coefficients for any particular compound.

Inevitably this programme becomes increasingly diffi-

cult as additional terms are added. Therefore, the

value of the theory is primarily in suggesting trends,

and in identifying regions of parameter space where

novel behaviour might be observed.
Although the major features of the equilibrium

behaviour of the blue phases are understood, much

less is known about their hydrodynamics. The current

simulations are on tiny samples and it is necessary to

guess suitable boundary conditions on the director

field. However, the response of the blue phases and

their disclination networks to an imposed flow is fas-

cinating, and a programme of developing the numer-
ical approach in tandem with experiment is likely to

uncover novel physics.

Solving the equations of motion of the blue

phases also makes it possible to investigate their

dynamics under changes in an applied electric field.

Understanding this is an important step to assisting

device design. Moreover, it is possible to follow the

kinetics of transitions between the blue phases, as an
external parameter such as the electric field is varied.

This allows prediction of possible sequences of phases

that will, in general, depend on the values of the free

energy, whether there is a convenient path through

blue phase 
FI

blue phase 
FII

hexagonal 
flexoelectric 
blue phase

Figure 9. Textural transitions in blue phase I induced by flexoelectricity. The electric field is applied parallel to the ½011�
direction (vertical in the figure) and produces a series of transitions first to two distinct textures possessing tetragonal symmetry,
with space groups I4122 and P4222, and finally to a two-dimensional hexagonal texture (viewed here along the field direction) at
larger field strengths.
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phase space allowing any given phase to be accessed,

and the speed with which the perturbation is applied.

For the examples described here the structural evolu-

tion depended primarily on relaxation kinetics, with

hydrodynamics playing a minor role. However, this

may not always be the case.

Finally we return to blue phases that have been

stabilised over a larger temperature range. One
approach has been to use bimesogenic molecules,

and there remain interesting questions as to whether

the resulting blue phase is stable or metastable and in

identifying the physical mechanisms behind the

increased temperature range. The polymer-stabilised

blue phases can be interpreted in terms of the polymers

pinning the disclinations. As numerical work on ever

more complex fluids develops, there are many exciting
questions about blue phases in mixtures of liquid crys-

tals and polymers, colloids and nanoparticles, that will

become increasingly accessible.
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(52) Tóth, G.; Denniston, C.; Yeomans, J.M. Phys. Rev. E,

2003, 67, 051705.
(53) Svensek, D.; Zumer, S. Phys. Rev. E 2002, 66, 021712.
(54) Svensek, D.; Zumer, S. Phys. Rev. Lett. 2003, 90,

155501.

1226 G.P. Alexander and J.M. Yeomans

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



(55) Denniston, C.; Orlandini, E.; Yeomans, J.M. Europhys.
Lett. 2000, 52, 481–487.

(56) Denniston, C.; Orlandini, E.; Yeomans, J.M. Phys.
Rev. E 2001, 64, 021701.

(57) Sulaiman, N.; Marenduzzo, D.; Yeomans, J.M. Phys.
Rev. E 2006, 74, 041708.

(58) Fukuda, J.I. Eur. Phys. J. B 1998, 1, 173–177.
(59) Marenduzzo, D.; Orlandini, E.; Yeomans, J.M. Phys.

Rev. Lett. 2004, 92, 188301.
(60) Marenduzzo, D.; Orlandini, E.; Yeomans, J.M. J.

Chem. Phys. 2004, 121, 582–591.
(61) Orlandini, E.; Marenduzzo, D.; Yeomans, J.M.

Comput. Phys. Commun. 2005, 169, 122–125.
(62) Marenduzzo, D.; Dupuis, A.; Yeomans, J.M.;

Orlandini, E. Mol. Cryst. Liq. Cryst. 2005, 435, 845–858.
(63) Marenduzzo, D.; Orlandini, E.; Yeomans, J.M. J.

Chem. Phys. 2006, 124, 204906.
(64) Orlandini, E.; Marenduzzo, D.; Yeomans, J.M. Mol.

Cryst. Liq. Cryst. 2007, 465, 1–14.
(65) Qian, T.Z.; Xie, Z.L.; Kwok, H.S.; Sheng, P. Appl.

Phys. Lett. 1997, 71, 596–598.
(66) Qian, T.Z.; Xie, Z.L.; Kwok, H.S.; Sheng, P. J. Appl.

Phys. 2001, 90, 3121–3123.
(67) Denniston, C.; Yeomans, J.M. Phys. Rev. Lett. 2001,

87, 275505.
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